異方性と表面の特異性を考慮した 湿式ペーパ摩擦材の透過性係数評価

服部 泰久*

Estimation of Permeability Coefficient of Paper-Based Wet Friction Material Considering Anisotropy and Surface Singularity

by

Yasuhisa HATTORI^{*}

(Received on Sep. 30, 2017 and accepted on Nov. 9, 2017)

Abstract

In this paper, considering anisotropy and surface singularity, the permeability of paper-based wet friction material is divided into three factors: out-of-plane permeability, inside in-plane permeability and surface in-plane permeability, and the permeability coefficient for each factor is estimated quantitatively by a permeation experiment conducted for three different test piece conditions and by a numerical calculation based on an analytical model. The out-of-plane permeability coefficient was almost the same as that of the former study. The inside in-plane permeability coefficient was a tenth of the out-of-plane value, while the surface in-plane permeability coefficient was two orders of magnitude greater than the inside value. In addition, the two in-plane permeability coefficients decreased with contact pressure, while the out-of-plane permeability coefficient was independent of contact pressure. Furthermore, it was observed that the surface in-plane permeability coefficient tended to increase with lubricant supply pressure.

Keywords: paper-based friction material, automatic transmission fluid, permeability, anisotropy, surface singularity

1. 緒 言

ペーパ摩擦材は自動車用自動変速機(AT)の湿式ク ラッチのフェーシング材として一般的に用いられてい る材料である.この摩擦材は紙をベースに作られてお り、繊維が絡み合った柔軟な網目構造を有している. また、自動変速機油(ATF)に浸されて使用され、内 部に潤滑油を含んだ状態で動作する.この摩擦材が押 し付けられ摺動を受けるとき、材料内を潤滑油が流動 する透過性は、摺動面の潤滑状態を変化させ、摩擦特 性に大きな影響を及ぼすと考えられている.

近年,自動車用 AT の高性能化への要求はますます 厳しくなっており,それに対応するため,湿式クラッ チにおいても係合時の摺動面に起こる現象を理論的に 解析して,シミュレーションによって性能を予測する 試みがこれまでに多くなされている¹⁻³⁾.しかしながら, 重要なパラメータである透過性係数については明確な 根拠をもって取り入れられておらず,そのことが定量 的な性能予測を困難にしている一つの原因と考えられ る. ペーパ摩擦材の透過性の特徴,特に,クラッチの係 合性能に寄与が大きいと考えられる,面内方向の特徴 を実験的に調べた報告は多くない.平栁はペーパ摩擦 材の厚さ方向の透過実験から,面外方向の透過性係数 を見積もっている⁴⁾.江口らは面内方向について透過 実験を行い,面圧,供給圧の流量への影響を測定して いるが⁵⁾,透過性係数の算出は行っていない.Marklund は数種のペーパ摩擦材について面内方向の透過実験を 行い面内方向の透過性係数を求めたが⁶⁾,面圧や供給 圧の関与については明らかでない.

著者らは、面内方向の透過実験を行い、透過性係数 を算出するとともに、面圧と供給圧の影響についても 考察した^{7,8)}.しかし、表面の繊維突起と相手面とのす き間を流れる表面流れを未考慮であったため、測定結 果を上手く説明できない部分があった.

そこで、本研究では、ペーパ摩擦材の透過性を、異 方性に加えて表面の特異性をも考慮することで3つの 因子に分けて捉え、それぞれの特徴を透過性係数とし て定量評価することを目的とする.

* 工学部機械工学科准教授

2. 透過流量の測定実験

2.1 試料および実験装置

Fig. 1 に示すように、ペーパ摩擦材試料を正方形に 切断し台座に接着したものを試験片として用いる. 台 座には中心に穴が開けられており、ペーパ摩擦材裏面 中央から潤滑油を供給できるようになっている. 後述 のように、ペーパ摩擦材には条件によって台座と同径 の穴を開ける. この試験片を Fig. 2 の実験装置に組み 込み、所定の面圧で相手面に押しつけた後、供給圧を 調節して潤滑油を流し込み、その流量を読み取ること で透過流量を測定する. 装置は恒温槽内に設置されて おり、一定温度で実験を行う.

2.2 実験方法および条件

透過性の特徴を3つの因子に分けて捉えるため、そ れぞれに対応した流れのパターンが変化するように、 Fig. 3のように、ひとつの試験片を3つの状態で使用 する.未処理のとき(Untreated:条件(N))には面内方 向の内部流れと表面流れに加えて面外方向流れが起こ るが、中央に穴を開けたとき(Drilled:条件(D))には 流れは面内方向に限定され、さらに表面をテフロン製 のシールテープで覆ったとき(Drilled & sealed:条件 (DS))には表面流れは内部流れと同程度になると考え

Fig. 1 Test piece.

Fig. 2 Experimental apparatus.

られる.実験条件は Table 1 のとおりである.面圧を与 えた後,潤滑油を供給し,流れが安定してから 10 分間 の流量測定を行う.

2.3 実験結果

Fig. 4 に流量の測定結果を示す.測定は各条件 5 回 行い,平均値をプロットで,最大・最小値をエラーバ ーで示す.条件(D)に比べて条件(N)および条件(DS)で は全般的に流量が減少しているが,これは,それぞれ, 面外方向の流れに抵抗が生じたため,および,表面の 流れが制限されたためと考えられ,試料差別の目的が 達せられているのが分かる.

また, 試料のどの条件のときにも面圧の増加により 流量は減少しており,条件(D)のときにその傾向が顕著 である.これは圧力によって内部の空隙が圧縮されて いるためと考えられ,条件(D)のときには表面の粗さ突 起の圧縮が特に大きいことが想像される.

さらに、すべての条件において供給圧の増加に応じ て潤滑油の流量は増加している。特に条件(DS)のとき にはよく比例関係が成り立ち、Darcyの法則に従って いることが分かる。条件(N)と(D)のときには供給圧の 1 乗以上の割合で流量が増加するが、これはこの 2 つ の場合は表面にシールがないため接触面に潤滑油が多 く存在し、その圧力が面圧の一部を負担することによ って、表面粗さ突起の変形が回復するとともに接触面 内のすき間が大きくなったことが原因となっている可 能性がある。

Fig. 3 Test piece conditions and flow patterns (supposed).

Table 1 Experimental conditions.

Specimen	Standard paper-based friction material
Specimen size $a \times a \times h$, ϕd [mm]	7×7×1.5, <i>φ</i> 1
Lubricant	Automatic transmission fluid
Lubricant viscosity η [mPa·s]	56
Temperature T [°C]	25
Contact pressure p_c [MPa]	0.1, 0.5, 1.0
Supply pressure <i>p</i> _s [MPa]	0.1, 0.2, 0.3, 0.4

Fig. 4 Flow volume (measured).

3. 透過性係数の算出

3.1 算出方法および条件

透過流量の測定結果より、ペーパ摩擦材内部には 3 種類の異なる流れがあることが分かり、それぞれに対応する透過性係数で特徴を捉えることが可能であると 考えて、これを算出する.

Fig. 5 に示すように,不透過な平行平面間に挟まれた3次元の多孔質体ブロックに,粘性流体が下面中央の円形穴から流入しブロック外周から流出するモデルを考える.多孔質体の透過性係数は面外方向と面内方向との間で異方性があり,さらに面内方向では内部に対して上面付近で異なる値をとるものとする.また,試験片の条件によっては,ブロックは中央に円筒形の穴を有している.

多孔質体ブロック内の粘性流体の流れは次の Darcy の式で表される.

$$v_x = -\frac{\beta_i}{\eta} \frac{\partial p}{\partial x} \tag{1}$$

$$v_y = -\frac{\beta_i}{\eta} \frac{\partial p}{\partial y} \tag{2}$$

$$v_z = -\frac{\beta_o}{\eta} \frac{\partial p}{\partial z} \tag{3}$$

ここで、pは流体圧力、 v_x , v_y , v_z は流速の各方向成分、 η は流体の粘度である. β_o , β_i は、それぞれ、面外方 向、面内方向の透過性係数であるが、面内方向の係数 は表面とみなす領域の厚さ t_s に応じてz方向位置によ って表面 β_{is} と内部 β_{ii} を区別する.

$$\beta_i = \begin{cases} \beta_{is} & (h - t_s \le z \le h) \\ \beta_{ii} & (0 \le z < h - t_s) \end{cases}$$

$$\tag{4}$$

ただし,条件(DS)のときは表面の係数 β_{is} の扱いを変え, 内部の係数 β_{ii} と同一であるという条件を付す.

$$\beta_{is} = \beta_{ii} \quad \text{for (DS)} \tag{5}$$

以上に加えて,流速の各成分間には次の連続の式が 成り立つ.

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0$$
(6)

この問題の境界条件は以下のように与えられる.

$$p\big|_{x=\frac{a}{2}} = 0 \tag{7}$$

$$p\Big|_{y=\frac{a}{2}} = 0 \tag{8}$$

Fig. 5 Analytical model and calculation grid.

$$p\Big|_{x^2+y^2 \le \frac{d^2}{4}, z=0} = p_s \tag{9}$$

$$p|_{x^2+y^2 \le \frac{d^2}{4}, \ 0 < z \le h} = p_s \quad \text{for (D), (DS)}$$
 (10)

$$v_x\Big|_{x=0} = 0 \tag{11}$$

$$v_{y}\Big|_{y=0} = 0 \tag{12}$$

 $v_{z}|_{z=0} = 0$ (13)

$$v_z\Big|_{z=h} = 0 \tag{14}$$

式(10)は,条件(D)と(DS)のときに境界形状が変わることに対する条件付きの境界条件である.

方程式(1)~(6)を境界条件(7)~(14)のもとに解けば、 次式よりブロック周囲から流出する流量が求められる.

$$q = 4 \left\{ \int_0^h \int_0^{\frac{a}{2}} v_x \Big|_{x=\frac{a}{2}} dy dz + \int_0^h \int_0^{\frac{a}{2}} v_y \Big|_{y=\frac{a}{2}} dx dz \right\}$$
(15)

透過性係数は、初期値を仮定し、式(15)によって得られる算出流量が測定値に合うように修正を繰り返す 収束計算によって求める.同一実験条件に対して、試 験片の条件(DS)、(D)、(N)の順序で計算することで、 β_{ii} 、 β_{is} 、 β_o を順次求めることができる.

計算は Fig. 5 に示す格子分割で有限差分法により行い,流量の算出には数値積分を,透過性係数の収束計算には Newton-Raphson 法を用いた.透過性係数を区別する表面層の厚さ t_s は,材料の密度に変化がある深さ範囲と考え,試料表面における繊維頂点高さ分布の標準偏差 5 μ m の 6 倍に繊維半径 20 μ m を加えて 50 μ m と見積もった(数値は文献 3)中のものを代表値として参考にした).表面直下の z方向の格子間隔は t_s の 2 倍の 100 μ m として格子間の中央が境界になるようにし,

表面の1層だけで表面の透過性係数 β_{is}を適用した.

3.2 算出結果

Fig. 6 に透過性係数の算出結果を示す. 面外方向の 透過性係数 β_o は 0.1 μ m² オーダーの値が得られている が,これは過去の報告例,たとえば文献 4)の値と同程 度である.これに対して,面内方向内部の透過性係数 β_{ii} は 0.01 μ m² 前後の値であり,面外方向と比べて 10 分の1の大きさである.面内方向表面の透過性係数 β_{is} は,条件によっては 1 μ m² のオーダーに達する場合も あり,面内方向の中でも内部と比べて 2 桁近く開きが あることが分かった.

面圧の増加に対して面内方向の内部と表面の透過性 係数である β_{ii} と β_{is} が低下しているのは,圧縮により 内部と表面の空隙に減少が起こったためと見られる. 面外方向の透過性係数 β_oがほとんど変化しないのは, 圧力が面外方向であるため,面外方向流れに対する繊 維の網目構造が変化しなかったためと考えられる.

供給圧による増加傾向は,面内方向表面の透過性係 数 β_{is} が比較的大きい.これは,上述の,潤滑油圧力が 面圧を分担することによって起こる表面粗さ突起の変 形回復の効果であると思われ,空隙が大きくかつ圧縮 剛性の低い表面において現れやすかったのだと考えら れる.

Fig. 7 に,面圧 $p_c = 1.0$ MPa,供給圧 $p_s = 0.4$ MPaの ときを例にとり,各試験片条件でのy = 0における断面 内の流速分布を示す.ここで矢印の長さは流速を対数 で表した相対的なものである.

条件(DS)のときは、中央穴部で供給圧 p_s が上面まで 達し、多孔質体内部で z方向の圧力勾配がなくなるた め、透過性係数が面内方向 β_{ii} より面外方向 β_o の方が 大きいにも関わらず流れは面内方向のみになる.条件 (D)で表面の透過性係数 β_{is} が面外方向 β_o より大きく なっても、中央穴部から外周までの x方向の圧力勾配

Fig. 6 Permeability coefficient (calculated).

Fig. 7 Test piece conditions and flow patterns (calculated) ($p_c = 1.0$ MPa, $p_s = 0.4$ MPa).

は一定であるため、表面の流速が増加するほかは、条件(DS)のときと変わりはない.条件(N)でz方向の圧力 勾配ができると流れに面外方向成分が起こってくるが、 外周までの抵抗は表面が最も小さいため、中央下部か ら流入した後の流れの向きはほぼ面外方向となり、面 内方向への流速はごくわずかである.このように透過 性係数の異方性と表面の特異性は流動パターンに大き く影響しており、これらを定量的に評価することの重 要性が確認できる.

4. 結 言

湿式ペーパ摩擦材の透過性を面外方向,面内方向内 部,面内方向表面の3つに区別し,試験片の条件を変 えた3種類の透過実験からそれぞれの透過性係数を定 量的に見積もることができた.

測定された透過性係数は,面外方向には過去の報告 例と同等の値であった.面内方向内部は面外方向の10 分の1程度の大きさであり,面内方向表面は面内方向 内部より2桁近く大きい値であった.

また,面内方向の内部と表面の透過性係数が面圧と ともに低下するのに対して,面外方向の透過性係数に は面圧依存性が見られないこと,面内方向表面の透過 性係数は潤滑油供給圧に対して増加傾向を示すことが 認められた.

参考文献

1) S. Natsumeda, T. Miyoshi: Numerical Simulation of Engagement of Paper Based Wet Clutch Facing, Trans.

ASME J. Tribology, Vol. 116, No. 2, pp. 232-237 (1994).

- 2) 矢部寛,高橋篤,熊谷頼範:フリクションプレートの係合過程のシミュレーション解析(第1報,理論解析モデル),日本機械学会論文集(C編), Vol. 73, No. 731, pp. 2149-2155 (2007).
- 3) 矢部寛,高橋篤,熊谷頼範:フリクションプレートの係合過程のシミュレーション解析(第2報,計算結果),日本機械学会論文集(C編), Vol. 73, No. 731, pp. 2156-2160 (2007).
- 平柳剛:ペーパ摩擦材における潤滑油の挙動と摩擦 特性, NSK-WARNER Technical Review, No.1, pp. 3-10 (1995).
- 5) 江口正夫・徳山篤人・高田仁志・山本隆司・平柳剛・梅 澤栄記:ペーパ系摩擦材と相手面で形成される断面 内の定常圧力流れの研究(装置の試作と流量・圧力 分布測定),トライボロジー会議1996春東京予稿 集,pp.33-35 (1996).
- 6) P. Marklund: Permeability Measurements of Sintered and Paper Based Friction Materials for Wet Clutches and Brakes, SAE Int. J. Fuels Lubr., Vol.3, No.2, pp. 857-864 (2010).
- 7) 小林拓矢・服部泰久:湿式ペーパ摩擦材の面内方向 透過性の測定,トライボロジー会議 2013 秋福岡 予 稿集 (2013).
- M. Hazim, Y. Hattori: Study on the Measurement of In-Plane Permeability of Paper-Based Wet Friction Material, Proceedings of Malaysia-Japan Joint International Conference 2016 (2016).